If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-10x-29=0
a = 4; b = -10; c = -29;
Δ = b2-4ac
Δ = -102-4·4·(-29)
Δ = 564
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{564}=\sqrt{4*141}=\sqrt{4}*\sqrt{141}=2\sqrt{141}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{141}}{2*4}=\frac{10-2\sqrt{141}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{141}}{2*4}=\frac{10+2\sqrt{141}}{8} $
| 105=8a+105 | | 462=2x^2+5x | | -151=-7-9k | | 1/3x-7=10/3 | | x−16/x+6=3/5 | | 6x-26=5x+2 | | 14x-17=21x | | x/19=125 | | -4x-4x-20=-116 | | 32^x-4=9 | | 12=3h-9 | | 0=-7+p/2 | | 4*s)-10=44 | | x+3+4x+1+3x=180 | | 17x+8=85 | | 9x-3-45-11x-5=180 | | -4x+21x+42=195 | | x+x/2+50=62 | | 2x+32+5x-5+90=180 | | 5k+11=6 | | 1/7p+-3.5=-5.2 | | 4x+2=2(2x-1) | | 2 | | 2 | | -40=x-2x | | 10-2=10(a+1)-8 | | 2x+3/8=3x-5.5/4 | | 12x-44=102 | | 4x-19+3x+4+90=180 | | 1/2n-8=-44 | | -3(5x-2)+2x=3(3-2x)+7 | | 5x-12+7x+12=180 |